分数的基本性质说课稿范文集锦五篇
作为一名专为他人授业解惑的人民教师,通常需要准备好一份说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么你有了解过说课稿吗?以下是小编为大家整理的分数的基本性质说课稿5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数的基本性质说课稿 篇1今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。
《分数的基本性质》反思
本节我想结合我校申报的市级课题《创设数学问题情境激发学生学习兴趣》和本人负责的市级课题《网络环境下促进自主学习的教学设计的研究》来谈谈这节课的教学设想,以及结合本节课的教学情况谈几点反思。
探索性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培养学生提问题的能力,教师以合作者、引导者的身份与学生一起探索,经历知识的获取过程,从而达到探究的目的,针对这点认识,这节课在我们学校课题组成员的集体备课下,作了这样的设计。这节课主要是,让学生能够从中感受到学习的乐趣,精心设计问题,让学生主动探求知识,发展思维。
1、情境的创设:“爱因斯坦说:“兴趣是最好的老师。”新课标提倡要关于创设情境,小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。通过和尚分饼,创设问题作为引子贯穿全课。利用课件中生动的动画,创设一种和谐愉悦的气氛,激发学生的学习兴趣,这点在这节课中我个人觉得达到这个目的。
2、探究活动与数学逻辑思维过去我们常为学生设计相同的学习方式并要求学生按照教师设计的流程展开学习。比如这节课的验证猜想中一本来我是设计了让学生按折、画、剪、比的步骤一步一步来引导学生操作,这样的设计看上去会很热闹,其实学生的操作依然是被教师牵着鼻子走。后来,为了给学生创设个性化的学习空间,我重新设计:“课桌上的信封里放着一些材料,你可以根据自己的需要选择合适的材料来验证自己的猜想,如果你觉得不需要材料,当然也是可以的。”这样的设计能够给予学生一定的探究空间,也增添也活动的趣味性和挑战性。但是在实际教学过程中,由于本人教学能力不够熟练,学生紧张,表现出来的并不像我所想像的那般,但至少可以算已是对传统的一种大胆的突破吧。
在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。
3、小组合作交流我们班由于在开展课题研究之前,很少可以说几乎没有合作的习惯。而这学期的小组合作的训练方面也做得不够,只能说是交流多于合作,所以在教学过程中出现了一些我预测不到的情况。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。
4、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。
5、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方 ……此处隐藏5732个字……活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
1、复习提问,旧知铺垫
新课开始,我先板书了一个除法算式 1÷2,然后让学生不计算,说出一个除法算式和它的商相等,学生边说我边抽取两个算式板书,比如2÷4,4÷8 ,3÷ 6等。然后让学生说说是根据什么想到这些算式的(商不变的规律),商不变的规律的内容又是什么。
第二步,我让学生根据分数与除法的关系,把这三个算式写成分数形式,根据三个算式商相等,推导出这三个分数的大小。也就是1/2=2/4=4/8。此时,引导学生:在除法中有商不变的性质,那么分数中又有什么规律呢?今天我们就共同来探讨分数当中的这个问题。这样设计的目的就是让学生通过观察算式和分数的特点,培养学生直觉观察能力,激发学生利用旧知识商不变的规律,探求新知识的兴趣,同时也使学生明确要解决的问题。
2、动手操作,初步感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。再观察涂色部分,说说发现了什么?在学生汇报时,说出发现:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:把一张纸条平均分成2份,涂其中1份,得到1/2;把一张纸条平均分成4份,涂其中2份,得到2/4;把一张纸条平均分成8份,涂其中4份,得到4/8;通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。这一过程的设置,主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
3、设疑促思,探究新知
“疑是思之始,学之端”。在教师板书1/2=2/4=4/8后,进一步引导学生观察这三个分数,它们的分子分母都不相同,但是分数的大小却相等,提出疑问:这里面隐藏着什么秘密,有什么规律?接着将发言权充分交给学生,完全开放空间,激发学生思索,并畅所欲言,说出自己发现的规律,(比如:将1/2的分子分母同时乘2得到2/4,将2/4的分子分母同时乘2得到4/8,将1/2的分子分母同时乘4得到4/8;将4/8的分子分母同时除以2得到2/4,将2/4的分子分母同时除以2得到1/2,将4/8的分子分母同时除以4得到1/2共6种)。
在学生自主探究的基础上,逐步完善学生的说法,适时引导学生将发现的规律总结成一句话:分数的分子分母同时乘或者除以相同的数,分数的大小不变。
如果学生在此说出了0除外更好,如果没有,在此基础上,提出疑问:“同时”表示什么意思?这个相同的数是任何数都行吗?为什么?那么同学们总结的规律该怎样叙述更完整呢?在学生加上“0除外”完整叙述后,指出:分数的这种变化规律就是我们今天学习的“分数的基本性质”,并借此板书课题“分数的基本性质”。
这样设计的目的就是培养学生发现问题,自主探究问题的能力,也培养学生的语言表达能力,抽象概括能力和初步的逻辑思维能力。
另外,我还安排了“听一听”,让学生听5句话并判断对错。
第一句:分数的分子分母同时乘相同的数(0除外),分数的大小不变。
第二句:分数的分子分母同时除以相同的数(0除外),分数的大小不变。
第三句:分数的分子分母同时加上相同的数(0除外),分数的大小不变。
第四句:分数的分子分母同时减去相同的数(0除外),分数的大小不变。
第五句:分数的分子分母同时乘或者除以相同的数(0除外),分数的大小不变。
除了进行“听一听”的练习,还有习题的判断。这样一次次地加深,强化学生对分数的基本性质的理解,反复锤炼学生,达到对知识的更深刻的掌握,也为后面例题的完成奠定厚实的基础。
4、初步应用,深化新知
学习分数的基本性质,就是为了在生活中运用它。给你一个分数,能把它化成分母不同而大小相同的分数吗?借此引出例2。让学生读题,并明白做题要求有两个:一是分数大小不变,二是分母相同。在引导学生完成第一个分数后,第二个分数让学生独立完成在书上,然后全班学生交流自己的过程及结果。但是一个例2不足以让学生达到巩固的目的,所以再次安排了和例2题型完全一样的“做一做”,让学生独立思考,写在练习本上,并抽两名学生板演,对出现的问题共同指正。这样的安排是为了把“分数的基本性质”及时练习,反复应用,对学生巩固新知、利用新知都达到好的效果。
5、多样练习,巩固知识
在初步应用“分数的基本性质”后,我安排了四个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=( )/( )的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
6 、全课小结,整理知识
让学生回顾本节课,说一说自己的收获,培养学生的知识概括能力。同时,教师也在此时进行总结:分数的基本性质和商不变的性质只是在说法上不同,在实质上是相同的,所谓“万变不离其宗”正是如此。通过利用“分数的基本性质”填空,写出许许多多分子分母不同但分数大小相等的分数,体会“以不变应万变”的数学学习方法。最后告诉学生一个小秘密,以后还将学习比的基本性质,它是在“分数的基本性质”的基础上学习的,这也是“用数学学数学”的学习方法。这样安排会更加激发学生学习数学的兴趣,以及探究数学问题的方法。
最后,我想说,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。